Nonlinear Vibration Analysis of the Beam Carrying a Moving Mass Using Modified Homotopy
Authors
Abstract:
In the present study, the analysis of nonlinear vibration for a simply-supported flexible beam with a constant velocity carrying a moving mass is studied. The amplitude of vibration assumed high and its deformation rate is assumed slow. Due to the high amplitude of vibrations, stretching is created in mid-plane, resulting in, the nonlinear strain-displacement relations is obtained, Thus, Nonlinear terms governing the vibrations equation is revealed. Modified homotopy equation is employed for solving the motion equations. The results shown that this method has high accuracy. In the following, analytical expressions for nonlinear natural frequencies of the beams have been achieved. Parametric studies indicated that, due to increasing of the velocity concentrated mass, the nonlinear vibration frequency is reduced. On the other hand, whatever the mass moves into the middle of beam, beam frequency decreases.
similar resources
Free Vibration Analysis of a Nonlinear Beam Using Homotopy and Modified Lindstedt-Poincare Methods
In this paper, homotopy perturbation and modified Lindstedt-Poincare methods are employed for nonlinear free vibrational analysis of simply supported and double-clamped beams subjected to axial loads. Mid-plane stretching effect has also been accounted in the model. Galerkin's decomposition technique is implemented to convert the dimensionless equation of the motion to nonlinear ordinary differ...
full textFree Vibration Analysis of a Nonlinear Beam Using Homotopy and Modified Lindstedt-Poincare Methods
In this paper, homotopy perturbation and modified Lindstedt-Poincare methods are employed for nonlinear free vibrational analysis of simply supported and double-clamped beams subjected to axial loads. Mid-plane stretching effect has also been accounted in the model. Galerkin's decomposition technique is implemented to convert the dimensionless equation of the motion to nonlinear ordinary differ...
full textVibration Analysis of a Nonlinear Beam Under Axial Force by Homotopy Analysis Method
In this paper, Homotopy Analysis Method is used to analyze free non-linear vibrations of a beam simply supported by pinned ends under axial force. Mid-plane stretching is also considered for dynamic equation extracted for the beam. Galerkin decomposition technique is used to transform a partial dimensionless nonlinear differential equation of dynamic motion into an ordinary nonlinear differenti...
full textNonlinear Vibration Analysis of a cantilever beam with nonlinear geometry
Analyzing the nonlinear vibration of beams is one of the important issues in structural engineering. According to this, an impressive analytical method which is called Modified Iteration Perturbation Method (MIPM) is used to obtain the behavior and frequency of a cantilever beam with geometric nonlinear. This new method is combined by the Mickens and Iteration methods. Moreover, this method don...
full textVibration Suppression of Simply Supported Beam under a Moving Mass using On-Line Neural Network Controller
In this paper, model reference neural network structure is used as a controller for vibration suppression of the Euler–Bernoulli beam under the excitation of moving mass travelling along a vibrating path. The non-dimensional equation of motion the beam acted upon by a moving mass is achieved. A Dirac-delta function is used to describe the position of the moving mass along the beam and its iner...
full textVibration Analysis of Beams Traversed by a Moving Mass
A detailed investigation into the analysis of beams with different boundary conditions. carrying either a moving mass or force is performed. Analytical and numerical techniques for determination of the dynamic behavior of beams due to a concentrated travelling force or mass are presented. The transformation of the familiar Euler-Bernoulli thin beam equation into a series of ordinary differentia...
full textMy Resources
Journal title
volume 6 issue 4
pages 389- 396
publication date 2014-12-30
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023